A. Pearson Correlation: Between continuous variable and continuous variable.
%macro corr (in, year); Title "Check Correlation - &in. group"; proc corr data= &in._&year. outp=corr_&in._&year. plot=(matrix scatterplot); var exper salary ; run; %mend corr;
- Variables Information
- Simple Statistics (N, Mean, Std Dev, Sum, Min, Max, Label
- Pearson Correlations (Correlation Coefficients, Prob)
- Scatter Plots
- Scatter Plots Matrix
B. Polyserial Correlation: Between continuous variable and categorical variable.
%macro corr (in, year); ods output polyserialCorr=corr_polys_&in._&year. ; Title "Check Polyserial Correlation - &in. group"; proc corr data= &in._&year. pearson polyserial; with gender minority rank; var exper salary; run; %mend corr;
- Variables Information
- Simple Statistics
- Person Correlations
- PolyserialCorr (Wald Test, LR Test)
C. Polychoric Correlation: Between categorical variable and categorical variable.
%macro corr (in, year); ods output measures=plcorr_&in._&year. (where=(statistic="Polychoric Correlation")); Title "Check Polychoric Correlation - &in. group"; proc freq data= &in._&year.; tables gender*rank minority*rank / plcorr; run; %mend corr;
- Cross-Tabular Freq Table
- Measures of Association (Polychoric Correlation)
D. Partial Correlation: Pearson correlation between variables while controlling other variables. Following example checks the correlation between salary and gender, controlling for rank and experience.
%macro partial (in, year); Title "Check Partial Correlation for basesal and gender - &in. group"; proc corr data=&in._&year. plots=scatter(alpha=.20 .30); var salary gender ; /* treat gender as continuous */ partial rank exper; run; %mend partial;